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describe an algorithm for the study of inextensible elastic
rods in three dimensions. Related work is being done con-A numerical algorithm for the three-dimensional dynamical vis-

cous Kirchhoff rod model is presented. The algorithm includes pro- currently elsewhere [20]. In Sections 3, 4, and 5 an algo-
scribed extension and contact forces. Numerical results for several rithm for the dynamics of an inextensible twisted filament
problems of biological significance are given, including dynamics will be developed. The principle points to be considered
of the writhing (or supercoiling) instability in closed rods and the

are the tracking of twist evolution and enforcement ofapproach to stable equilibria, and the dynamics and instability of
inextensibility. Enforced inextensibility is then generalizedopen rods, particularly with regards to the self-assembly behavior

of fibril structures composed of the bacteria bacillus subtilis. Q 1996 to proscribed extensibility. One phenomenon that can be
Academic Press, Inc. explored using this algorithm is the ‘‘writhing’’ or ‘‘su-

percoiling’’ instability observed in twisted elastic filaments.
The energetics of the circular, uniformly twisted equilib-

1. INTRODUCTION rium configuration were analyzed by Zajac [10] (and again
independently by Benham [5]) indicating that for a certainThe study of elastic rods has a long history and is the
critical total twist this configuration no longer has minimumsubject of continued scientific and mathematical interest.
energy. In Section 6 illustrations of the dynamics of theA rod is defined to be a structure with length much greater
instability and the evolution of twist and writhe are pre-than diameter, where for the purposes of this paper it will
sented. We also consider the approach to stable equilib-be assumed that the cross section is circular of constant
rium with contact forces and note the possibility for moreradius a. Applications of the dynamics of rods and filaments
than one dynamically attainable equilibrium conformationrange from integrable PDEs [1–3] to DNA conformation
starting from similar initial conditions. In Section 7 instabil-[4–7] to three-dimensional scroll waves [8, 9] to the writh-
ities in the dynamics of open filaments are considered.

ing of telephone cable [10] to the formation of sunspots
Open elastic filaments arise, for example, in the context of

and the heating of the solar corona [11, 12], etc. While the
the macro-fibers formed by chains of the bacteria bacillus

static theory of elastic rods is classical and well studied,
subtilis. Growing and twisting chains of these bacteria cells

their dynamics have only recently received attention and become unstable and exhibit complicated writhing behav-
issues arise particularly with regards to computational ior [21]. Instabilities in open filaments can only be effec-
methods. This paper addresses some of these issues and tively studied dynamically. Current energy minimization
presents results obtained using a computational model of a methods fail because they assume constant (and hence, in
linear viscoelastic rod subjected to nonequilibrium forcing. the case of open filaments with circular cross section, zero)
The immediate aim is to present a practical working algo- twist. Behavior of the dynamical open rod suggests a
rithm for the dynamical Kirchhoff rod model in the context straightforward explanation for the behavior of filaments
of several specific biological applications. of the bacterial bacillus subtilis.

The original classical work on the theory of rods under
linear elastic forces is due to Kirchhoff [13], Clebsch [14], 2. THE KIRCHHOFF ROD MODEL
and Love [15]. A short overview of this theory will be
presented in Section 2. Most work on the Kirchhoff model One can certainly model an elastic filament using the
to date has concentrated on questions of static equilibrium three-dimensional equations of elasticity theory. However,
(see, for instance, [16, Chap. 2]). More recently, consider- under some circumstances it is to be expected that such a
ation has been given to elastic rod dynamics, especially in filament can be well-described as a one-dimensional system
two dimensions and with regards to the classification of of equations. One set of such equations, the Kirchhoff rod
travelling waves (e.g., [17, 18]). In the case of three-dimen- equations, can be constructed as follows. (For a detailed
sional rods, Simo and Vu-Quoc [19] have presented an discussion of the Kirchhoff rod equations and their under-

lying assumptions, see [23].) The rod is represented by aalgorithm for shearable, extensible elastic rods. Here we
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isotropic rods, choosing the reference ribbon to lie in the
direction of one of the principle bending directions may
be more convenient. Of course, for more general cross
sections the relation between twist and torsional strain may
not be as simple (although it still exists).

The Kirchhoff model divides the rod into short (relative
to all length scales present other than the filament radius)
segments (Fig. 1) and balances the local forces and torques
(see, e.g., [16]). Define F(s, t) to be the averaged (or resul-
tant) internal stress on the perpendicular cross section at
X(s, t). Then balancing the internal resultants F(s 1 Ds,
t) 2 F(s, t) P (d/ds)F(s, t)Ds with the ‘‘external’’ forces
gives

rfa2 d2

dt2 X 5
d
ds

F 2 c1
d
dt

X 1 g, (1)

where r is the filament mass density, 2c1X
.

is the viscous
drag force, and g(s, t) contains the other true external
forces such as gravity, contact forces, etc. A similar equa-
tion can be derived using balance of torques as follows.
Define M(s, t) to be the resultant internal moment on the
perpendicular cross section at X(s, t). The moment on the
cross section at X(s, t) must be balanced by the moment
on the cross section at X(s 1 Ds, t), the induced internal
moment 2DsT 3 F(s, t), plus any ‘‘external’’ moments.

FIG. 1. The balance of forces and torques on a short segment of the
The resulting equation, which includes a representation ofKirchhoff rod.
angular inertia and damping in a form which distinguishes
contributions of tangential and cross-sectional compo-
nents, can then be written as

space curve X(s, t) : [0, L] R R3 and twist (to be defined
below) g(s, t) : [0, L] R R (it is assumed that everything d

ds
M 5 F 3 T 1 rJüT 1 W1 1 c2(u

.
u xT 1 W2) 1 h. (2)

is as smooth as needed throughout). Here s is arclength
and L is the total length of the rod. For simplicity it is
assumed that the rod has circular cross section with con- The quantities W1 and W2 are the non-tangential compo-

nents respectively of the angular inertia and velocity ofstant radius in both time and space. It will also be assumed
that a material cross section perpendicular in the relaxed the rod cross section. The terms involving ü and u

.
are

the corresponding tangential contributions. The angle u isstate remains perpendicular for all time (unshearability).
In the case of a closed filament, X(0, t) 5 X(L, t) and g(0, defined so that u9 5 g (here, 9 refers to differentiation with

respect to arclength). The quantity J 5 fa4/2 is the masslesst) 5 g(L, t). The unit tangent vector along the curve X is
given by T(s, t) 5 (d/ds)X(s, t). Define a reference ribbon moment of inertia of a rod cross section about a centered

axis normal to the cross section, and c2 is a damping coeffi-by a pair of curves (X, X 1 aV), where V(s, t) : [0, L] R
R3 is a unit vector field such that V ? T 5 0 and a is the cient. The notation ?ux refers to a quantity with respect to

fixed X. The second to last term in Eq. (2) is included inradius of the filament cross section. The twist g (with
respect to the reference ribbon (X, X 1 V)) is defined to order to damp internal motion. However, even without

any internal motion of the cross section it is possible forbe the rotation rate of V around T moving along X; i.e.,
g(s, t) 5 (V(s, t) 3 (d/ds)V(s, t)) ? T. The choice of V is u to change due to motion of the base curve X (see Section

4). This effect is a purely geometrical one and is not subjectfairly arbitrary; it will be assumed that V is a smooth
material vector field chosen such that g 5 g0 , the relaxed to any dynamical damping. Thus it is important to damp

only the non-geometrical part of u
.
, namely u

.
ux. The termtwist, when the rod is in an energetically relaxed conforma-

tion. With this requirement satisfied, g is independent of h contains any external moments that may be acting on
the rod. Dill [23] has described a simplification of (2) duethe choice of the ribbon’s initial condition and, under the

uniform isotropy assumption made above, the twist can be to Kirchhoff in which the terms involving W1 and W2 are
dropped. This approximation is adopted here. The rangeidentified with the torsional strain of the rod. For non-
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of validity of this assumption as an asymptotic approxima- The system (1) and (2) will now be scaled as follows.
tion of the full elasticity equations is unclear, although in Let L be a characteristic lengthscale of the rod (e.g., total
all the results presented here damping is significant and arclength at time 0) and let T be the timescale for a linear
thus the inertial term W1 can be expected to be small torsional wave to traverse this lengthscale. Then L/T p
anyway. A related and in principle closer approximation (e/r)1/2, the characteristic velocity of linear torsional waves
to full elasticity, sometimes called unshearability, is that [16]. Define dimensionless variables Ls̃ 5 s, LX̃ 5 X,
the tangent vector T is always perpendicular to the material Tt̃ 5 t, rL2/T 2F̃ 5 F, rL3/T 2g̃ 5 g, rL3/T 2M̃ 5 M, rL2/
cross section. However, this approximation requires a T 2W̃1 5 W1 , L/TW̃2 5 W2 , and rL2/T 2h̃ 5 h. After drop-
matching of the non-tangential angular acceleration W1/ ping the tildes, (1), (2), and (3) become
rJ with T̈, and, as W1 is expected to be small here, the
extra computation does not seem justified. d2

dt2 X 5
d
ds

F 2 h1
d
dt

X 1 g (5)Equations (1) and (2) are supplemented by the constitu-
tive relation of linear elasticity

d
ds

M 5 F 3 T 1 üT 1 W1 1 h2(u
.
ux 1 W2) 1 H (6)M 5 EI(k 2 k0)B 1 eJ(g 2 g0)T, (3)

where E is the Young’s modulus, e is the torsional rigidity, M 5 G21kB 1 gT. (7)
and I 5 J/2 is the massless moment of inertia of a rod
cross section about a centered axis in the plane of the cross

The dimensionless numbers G 5 eJ/EI 5 C/A and hi 5section. k 5 udT/dsu is the curvature of X, and g is the
ciT/r measure respectively the relative energetic impor-twist of a reference ribbon as defined previously. B(s, t)
tance of twist and flexure and the relative time scales ofis the binormal vector defined by the Frenet–Serret equa-
viscosity and inertia. As mentioned above we will settions [24],
W1 5 W2 5 0 throughout.

An additional remark to be made here concerns thed
ds

T 5 kN
relation between EI and eJ. Now e, the shear modulus,
is related to the Young’s modulus E byd

ds
N 5 2kT 1 tB (4)

e 5
E

2(1 1 s)
. (8)d

ds
B 5 2tN.

The constant s is called the Poisson’s ratio. On physicalThe quantity t, the torsion, is easily calculated to be the
grounds s lies between 0 and As (with s 5 As corresponding totwist of the ribbon (X, X 1 N) (wherever N is defined and
incompressibility). For real physical materials and circulardifferentiable). For simplicity it will be assumed here until
cross sections, then, the ratio eJ/EI 5 G should lie betweenstated otherwise that k0 5 g0 5 0. Also note that EI and

eJ are often denoted as, respectively, A, the elastic bending 1 and Sd (with Sd corresponding to incompressibility). We
coefficient and, C, the torsional rigidity coefficient, particu- will use G 5 1 throughout.
larly in the biological literature.

The unit vectors T, N, and B form an orthonormal triad 3. TENSION
which is at first glance convenient for rods with circular
cross section because of (3). Note, however, that N and B Equation (5) determines Ẍ in terms of F, X

.
, and g, and

are only defined when k ? 0 and, in general, vary discontin- Eq. (6) and relation (7) determine F' ; FNN 1 FBB.
uously through points with k 5 0. Instead, using the ribbon However, the tension FT ; F ? T is as yet undetermined.
vector V, it is possible to construct a more practical mate- For an extensible filament the tension is proportional to
rial orthonormal basis T, V, U 5 T 3 V, Then (4) are the extension. We wish, however, to consider stiff filaments
replaced by here; for an incompressible or slightly compressible rod

the speeds of nonlinear bending and torsional waves ared
ds

T 5 k1V 1 k2U slower than the extensional wave speed. In order to avoid
introducing a short time scale associated with extensional
waves we instead enforce inextensibility through the fila-d

ds
V 5 2k1T 1 gU

ment tension FT as will be discussed below. Then the notion
of inextensibility will be generalized to allow proscribed ex-d

ds
U 5 2gV 2 k2T, tension.

T(s, t) is a unit vector field for all t and thus T
.

5 L 3
T for some L(s, t) such that L ? T 5 0. Then T ? T

.
5 0 andwhere k1 5 kN ? V and k2 5 kN ? U.
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so T ? T̈ 5 2T
.

? T
.

5 2L2. Also, T ? T̈ 5 T ? Ẍ9 5 T ? (F0 2 it then follows that TT ? TT̈ 5 A2T ? F0 and, thus, calculating
as before, one obtainsc1T

.
) 5 T ? F0 (by (1)). Writing F 5 FTT 1 F' as above

one obtains
d2

ds2 FT 2 k 2FT 5 2T ?
d2

ds2 F' 2 L2 1
d
dt

r 1 r 2. (10)

T ?
d2

dt2 T 5 T ?
d2

ds2 F

Again the right-hand side of (10) depends only on known
quantities and, hence, determines the tension FT in such a5

d2

ds2 FT 2 k2FT 1 T ?
d2

ds2 F' .
way that arclength is proscribed according to the function r.

Thus, 4. TWIST AND WRITHE

An important additional issue involves tracking of the
twist evolution in a moving filament. From Eq. (2), if X isd2

ds2 FT 2 k2FT 5 2T ?
d2

ds2 F' 2 L2. (9)
fixed then

The quantities on the right-hand side of (9) are known d2g
dt2 5

e
r

d2g
ds2 2

c2

rJ
dg
dt

, (11)and, together with the appropriate boundary conditions
(FT(0, t) 5 FT(L, t) 5 0 for open rods and periodic for
closed rods in the absence of external loading), determine the familar torsional wave equation [16] with dissipation.
the tension FT . However, the definition of twist involves the conformation

It is now possible to generalize to the situation of a rod of the base curve X(s, t). Hence deformations of X that
with proscribed extension rate r(s, t). Let TT be a material carry the reference ribbon rigidly may still, and, in fact, in
tangent vector to X with, for definiteness, uT (s, 0)u 5 1. general they do, change the twist g(s, t). Note that for a
Let s(s, t) be a material parametrization of X, i.e., one short material section DL of rod that is stretching (only),
that stretches and contracts along with X, such that, for gDL is a constant (this is a statement of conservation of
definiteness, s(s, 0) 5 s. Set ds/ds 5 A(s, t). Then twist). Thus (gD̈L) 5 0 and so

TT (s, t) 5 A(s, t)T(s, t) 5
d

ds
X(s, t). d2g

dt2 5 2Sd2

dt2 ln DLDg 2 Sd
dt

ln DLD dg
dt

.

Proceeding as before, set TT
.

5 L 3 TT 1 rTT, where TT ? If, for example, DL(t) 5 DL(0)ert with r a constant, then
L 5 0. Observe that TT ? TT

.
5 rA2 and TT ? TT

.
5 TT ? (A

.
T 1 g

.
5 2rg and so constant rate filament stretching without

AT
.
) 5 AA

.
, so A

.
5 rA (with A(s, 0) 5 1). Also other motion results in a decrease in twist. This is, in fact,

intuitively clear. If a length of rod is stretched with no
change in total twist then g, the twist per unit length, mustTT ? TT̈ 5 2TT

.
? TT

.
1 r

.
A2 1 2rAA

.

decrease proportionally to the stretching.
5 (2L2 1 r

.
1 r 2)A2. Twist can also be changed through rigid motion of the

base curve without any arclength deformation. This effect
can be illustrated by a simple experiment. Extend yourNoting that
arm horizontally in front of you with wrist bent so that
your hand points straight up. Your hand and arm can be
thought of as vectors of an untwisted ribbon (with yourd2

dt2 TT 5
d2

dt2



s
X

arm as the base curve). Now rotate your arm 908 down to
your waist, then 908 out to the side, and then 908 back to

5


s

d2

dt2 X its original position, all without any twisting of the wrist.
Note that the head-hand ‘‘ribbon’’ has gained a 908 rotation
despite no intrinsic twisting having occurred. This experi-

5


s
S d

ds
F 2 c1

d
dt

XD ment also illustrates the idea of a ‘‘geometric phase’’ oc-
curring upon the circuit of certain classical or quantum
systems around a closed path [25].

5 A
d2

ds2 F 2 Ac1
d
dt

T
The equation for the change in g under an inextensible
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deformation of X that rigidly moves the reference ribbon ing-free deformations of the curve X [31–34] (for the pur-
poses of this paper Lk is the linking number [35] of theis [26] (see also [27, 28])
curves X and X 1 V). Note that Lk and Tw depend on
the choice of reference ribbon but Wr does not. With thed

dt
g 5 kB ? T

.
. (12) choice of notation Lk(X) and Tw(X) the dependence on

the ribbon vector V is suppressed. Also, although the twist
g depends on the parametrization, the total twist Tw doesCombining these various possibilities one then obtains
not. It is easily shown that Lk(X) and Wr(X) jump by 62the twist evolution equations (in non-dimensional form)
upon curve crossings and Tw is clearly continuous for all
smooth deformations.d2g

dt2 2
d2g
ds2 5 2Sd2

dt2 ln ADg 2
d
dt

ln A
d
dt

g

(13)

Now the energy of a linear elastic rod is

E 5 K.E. 1
1
2
E

[0,L]
(EI(k 2 k0)2 1 eJ(g 2 g0)2) ds,1

d
dt SkB ?

dT
dt D2 h2 dg

dt U
X

(16)
from (11) and (12). The extra ‘‘inertial’’ terms in this equa-
tion are essential as they provide a coupling between curve where K.E. is the kinetic energy of the system and at static
motion and twist. equilibrium g 5 const [16], so that g and Tw are linearly

Next we discuss a geometric characterization of closed related. From (15), however, DTw 5 2DWr. Hence in
curves, the writhing number (or writhe). The writhing num- closed systems twist can be stored as writhe at the cost of
ber of a curve X is a measure of its coiling, or helicity (see increased curvature and, thus, the writhing number pro-
[29]). A number of equivalent definitions of writhe are vides a geometric diagnostic of elastic energetics. In partic-
available (see, e.g., [30]); a computationally straightfor- ular, writhe provides a measure of the conversion of inter-
ward integral formula is nal twist to external geometrical structure.

Wr(X)
5. NUMERICAL SETUP

5
1

4f
E

[0,L]
E

[0,L]

(T(s9) 3 T(s)) ? (X(s9) 2 X(s))
uX(s9) 2 X(s)u3

ds9 ds. The curve X and twist g are discretized into a number
of points xi and twist at these points gi which evolve ac-

(14) cording to second-order centered difference schemes for
(5), (7), (13), and the non-tangential part of (6). Time

Showing that the integrand is 0 in the limit s R s9 is an evolution is done using a Runge–Kutta integrator. A con-
exercise that will be left to the reader. In particular, any tact force C is added to Eq. (5). The contact force takes
segment li of a piecewise linear curve contributes zero self- the form of a stiff inverse power law (C p r210) with a
induced helicity, i.e., ‘‘charge’’ density 1 concentrated at the discretization

points. (Here charge density does not refer to a physical
electrostatic charge but one following an r210 law,) C is1

4f
E

li
E

li

(T(s9) 3 T(s)) ? (X(s9) 2 X(s))
uX(s9) 2 X(s)u3

ds9 ds 5 0
scaled so that the filament radius a is approximately two
to three discretization lengths. The requirement a/L ! 1

and, hence, formula (14) is easily regularizable for discret- is a necessary one for numerical stability and convergence.
ized curves. It is evident from (14) that Wr is a global The stiff power law is chosen in order to approximate a
characteristic of X and not a local one. sharp boundary contact force. The issue of sensitivity of

The writhing number has energetic consequences for the results to choice of contact force is not investigated here.
following reason. Defining the total twist Tw by The function h in Eq. (6) is set to zero. The tension is

determined in a manner to be described below.
A very important feature of any numerical scheme forTw(X) 5

1
2f

R g(X(s)) ds,
filament simulations is tension. Tension is necessary to
keep the points xi from flying apart. This can be accom-

then the quantity plished by using springs to tie adjacent points together
(e.g., [7]). However, for stiff filaments like the ones consid-

Lk(X) 5 Tw(X) 1 Wr(X) (15) ered here, resolving the spring time scale may necessitate
overly small time steps and/or implicit integrators. To
avoid such remedies we instead derived in Section 3 ais a topological invariant and, thus, is constant under cross-
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the desired second-order discretization consistent with (9).
Equation (17) is a tridiagonal system for open filaments
and is tridiagonal plus two off-diagonal elements for closed
systems. Either way, inversion is a straightforward O(n)
operation [36]. The generalization of (17) to account for
proscribed extension is

1
h

(Ti11 2 2Ti 1 Ti21) 2
k2

i11h
2

Ti11 2
k2

i h
2

Ti21

(18)
5 2ti ? (Qi11 2 Qi) 2 h(t

.
i)2 1 hr

.
1 hr 2.

Use of (17) or (18) to calculate tension still introduces
instabilities over relatively long times due to errors intro-

FIG. 2. Discrete forces on a section of the chain hxij. duced by time discretization. These errors can be removed
by eliminating spurious tangential velocities. The require-
ment T

.
? T 5 0 for local arclength conservation can be

easily seen to implymethod to simulate inextensible filaments and filaments of
proscribed extension. A tension FT which satisfies (10) will
enforce a proscribed arclength. However, a naive discreti-
zation of (10) may fail because truncation errors tend to
set off numerical instabilities. It is instead desirable here
to derive a discretization that works to round-off error.
We can also use this opportunity to provide an alternative,
direct derivation by calculating the balance of forces on
the piecewise linear chain discretization of the smooth rod.
This approach also suggests a way of generalization to
higher dimension. Figure 2 illustrates a short segment of
the chain encompassing the points xi21 through xi12 . The
Qi are the forces on the points xi calculated from discretiz-
ations of Eqs. (5) and (6), except not including FTT. For
simplicity set the distance between each pair of points to
be h and assume that h is constant in time. Let Ti be the
tension on the chain segment between xi and xi11 . Then
the point xi feels a tension force h21(Titi 2 Ti21ti21), where
ti is the unit vector pointing from xi to xi11 .

We now consider the forces necessary to keep xi and
xi11 at a constant distance. First, if ti 3 (x

.
i11 2 x

.
i) ? 0 then

a centrifugal force of magnitude h21uti 3 (x
.

i11 2 x
.

i)u2 5
ht

.
2
i is necessary to keep xi and xi11 from flying apart. Addi-

tionally it is necessary to balance the ti component of
Qi11 2 Qi . To satisfy these two requirements it is necessary
that the tension solves

h21ti ? [(Ti11ti11 2 Titi) 2 (Titi 2 Ti21ti21)]

5 2ti ? (Qi11 2 Qi) 2 h(t
.
i)2.

Discretizing the relation k 5 udT/dsu by ki 5 h21uti 2 ti21u
and noting that ti ? ti21 5 1 2 (h2k2

i /2), one obtains

1
h

(Ti11 2 2Ti 1 Ti21) 2
k2

i11h
2

Ti11 2
k2

i h
2

Ti21
(17)

FIG. 3. Evolution of Tw and Wr for the clover-leaf example: (a) Lk
(dashed curve) and Wr (solid curve) versus time; (b) Tw versus time.5 2ti ? (Qi11 2 Qi) 2 h(t

.
i)2,
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FIG. 4. Approach to equilibrium ‘‘clover’’ conformation. First row: t 5 0, t 5 0.40, t 5 0.55. Second row: t 5 0.75, t 5 0.95, t 5 3.0.

nostics included conservation of various quantities includ-d
ds

qT 5 kqN , (19) ing the linking number (15) for closed rods. An additional
check comes from the verification of the Zajac instability
criterion for closed filaments (to be described in the nextwhere qT and qN are the tangential and normal components
section), providing support for both the numerical resultsrespectively of X

.
. In principle (19) should be satisfied auto-

and the Zajac and Benham analyses.matically due to the presence of the tension force satisfying
Eq. (17). However, as mentioned, time discretization intro-
duces small errors that result in (19) not being exactly 6. INSTABILITY AND STABILITY OF CLOSED RODS
satisfied and can cause instability if unchecked. This prob-
lem is fixed by adding a tangential velocity so that (19) is An inextensible rod closed into a circle with uniformly

distributed twist is easily seen to be in equilibrium. How-satisfied to round-off precision. The additional velocity,
which can be calculated using a similar procedure to the ever, this equilibrium is known to be unstable for suffi-

ciently large twist. The critical total twist V has been calcu-one presented above, is very small and results in no notice-
able change in diagnostic statistics. This procedure general- lated [10, 37, 5] to be V 5 Ï3(EI/eJ) 5 Ï3G21. For the

special case G 5 0 (i.e., no contribution to the twist energy)izes easily to the proscribed extension case.
In Section 7 we will be considering an open rod with it is in fact known that, in the absence of contact forces,

the circle is the only stable equilibrium [38]. In general,constant arclength growth rate r(s, t) 5 r0 at each point
resulting in exponential growth of total arclength. In order however, the question of identification of stable equilibria

is open, with or without contract forces. Much work hasto maintain accuracy, a regriding occurs after each arc-
length doubling time by inserting a new discretization point been done on generating equilibrium configurations using

the static rod equations, usually without contact forces,between each pair of old discretization points using first-
order interpolation. This simple interpolation scheme con- but apparently little is known about the stability of these

configurations (see, e.g., [39]).serves total twist (both locally and globally).
The main error checking method was a convergence Beginning with [4, 40], elastic rod and related systems

have now been used in DNA modelling for a number ofstudy using decreasing discretization lengths. Other diag-
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FIG. 5. Approach to equilibrium ‘‘plectonemic’’ conformation. First row: t 5 0, t 5 0.35, t 5 0.45. Second row: t 5 0.55, t 5 0.75, t 5 0.95.
Third row: t 5 1.25, t 5 1.55, t 5 3.50.

years (see [41] for a recent review). Typically in such mod- tonic energy dissipation and no dynamic fluctuations. The
simulations presented here do allow for non-uniform twistels it is assumed that the twist g 2 g0 is constant along

the rod (the equilibrium state) and then using (15) the so, in principle, one could add forcing to the present model
in an attempt to improve on the studies mentioned above.term r (g 2 g0)2 ds in (16) can be replaced (up to a con-

stant) by (Lk 2 Wr)2. This simplification allows one to Of course, DNA is not a classical elastic rod and it is not
clear that an improved approximation of an elastic roddrop g altogether and base all computation only on the

geometry of the curve X. The new energy functional can would lead to improved modelling of DNA dynamics. This
issue of the validity of modelling DNA as an elastic rodthen be minimized using, for example, a Monte Carlo-type

descent method [42]. More involved simulations (Langevin is a topic of current interest [44, 45]. Nevertheless it seems
possible that the assumption of uniform twist may be atdynamics) using descent for the same energy functional

with the addition of viscosity and random forcing terms least quantitatively significant and a better representation
of twist might be useful. In some applications allowance(to model a finite temperature Brownian environment)

have achieved some success in modelling circular DNA for twist dynamics is essential (see Section 7). We present
here a few simulations using the more ‘‘realistic’’ modeldynamics [43]. All the numerics presented in this section

use dissipation but no forcing and thus we observe mono- (although without dynamic fluctuations).
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FIG. 6. Photograph of a filament of bacillus subtilis at an advanced stage of self-assembly. Each visible ‘‘strand’’ is actually composed of many
pieces of the bacterial filament.

In the circular (unstable) equilibrium conformation, the dynamics of the writhing instability (also known as the
supercoiling instability) are simulated and some resultingrod has twist and no writhe (see Section 4). As instability

occurs, twist energy is decreased by the conversion of twist stable equilibrium configurations are presented. Disal-
lowing rod passage, Lk 5 Tw 1 Wr holds with Lk constant,to writhe. Hence the dynamical process that is observed

might be called a writhing instability. In this section the and, thus, the instability is eventually halted because the
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L)). The equilibrium of Fig. 5 is sometimes called the
plectonemic conformation and is familar to DNA studies
(e.g., [41]). It is stressed that the final conformations of
Figs. 4 and 5 are distinct obtainable local energy minima
of unknotted closed rods with identical linking number.
For the particular case shown here the plectonemic struc-
ture has roughly Sd the energy of the clover structure. Dy-
namic fluctuations would, of course, favor the lower energy
structure, but at sufficiently low temperatures both might
exist. In fact clover-like structures are observable in
Langevin dynamics simulations [46].

7. DYNAMICS OF OPEN RODS

The results presented in this section are motivated by a
desire to model behavior of filaments of the bacteria bacil-
lus subtilis [21]. Individual cells of this bacteria grow as an
extending cylinder with diameter of approximately 0.8 em
and maximum length approximately 3 to 4 em prior to cell
division. As growth occurs, cell wall structures composed of
the polymer peptidoglycan apparently induce twist in the
cell walls [22]. Although these polymers seem to have an
important role in the cell structure, their geometry is
largely unknown. Another important feature of the growth
process for this bacterial strain is that after division, the
cells fail to separate. Thus the bacteria cells form an expo-
nentially growing filament doubling in length over a time
of the order of 70 min. At a certain point the extending
filament becomes unstable, eventually contacting itself and
forming a closed structure which quickly winds up plecto-
nemically into a double helical conformation. In this fash-
ion twist converts into writhe. Next the resulting double
helical structure grows exponentially, becomes unstable,FIG. 7. Schematic of the writhing instability of bacillus subtilis (origi-

nally published in [47]. and eventually forms a quadruple-stranded plectonemic
structure, and so on. Eventually thick strands of in-
terwound bacteria are produced (Fig. 6). This striking be-
havior is an example of a biological self-assembly process.rod is unable to ‘‘unwind’’ by passing through itself. This

fact allows the possibility for the rod to become stuck in A schematic of the writhing sequence is shown in Fig. 7.
The filament instability resembles that commonly observeda local minimum. In Fig. 3 the behaviors of Lk, Wr, and

Tw are shown for certain initial conditions (the ‘‘clover’’ in twisted rubber bands. There are some significant differ-
ences, however; for example, unlike a twisted rubber band,conditions, see below). Lk is constant as expected and

Tw and Wr evolve continuously but are approximately the ends of the bacteria filament are free. Furthermore the
supercoiling that occurs in a rubber band has the oppositeconstant after contact occurs. A sequence of snapshots of

the dynamics of approach to equilibrium for two examples handedness to the twist, whereas in the bacteria filament
system the handedness is the same.(G 5 1, r0 5 As) are shown in Figs. 4 and 5. In both examples

the initial conditions are chosen to be a circular conforma- It is proposed here that the bacteria filament and its self-
assembly process can be modelled by a dynamical Kirch-tion with Tw 5 5. The four-leaf clover in the final frame

of Fig. 4 is the eventual equilibrium when the initial twist hoff viscoelastic rod with contact forces and filament
growth. The aim of modelling the bacteria is somewhatis distributed uniformly with a small localized perturbation.

The final frame of Fig. 5 illustrates the eventual equilibrium different than that of DNA modelling. Rather than ob-
taining quantitative information we wish to gain qualitativeconformation for exactly the same parameters and initial

conditions as the first example, except that the initial twist information about the structure of the bacterial cell walls
by demonstrating that a few simple assumptions about theincludes an order one non-localized perturbation from uni-

formity, in particular, g(s, 0) 5 2f(Tw/L)(1 1 0.5 sin(2fs/ bacillus subtilis system (and, in particular, the cell walls)
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implicitly assumed). To satisfy assumption 2 the exponen-
tial growth rate of the bacteria is enforced by adding a
growth term r2 to the tension equation as described in
Section 3. The filament is not inextensible but instead
changes length in a proscribed non-dynamic way. In non-
dimensional form r2 5 (T/Tgr)2, roughly the square of the
ratio of the wave time scale to the length doubling time
scale. A more subtle consequence of assumption 2 comes
from its effect on twist evolution. As can be noted from
Eq. (13) (with ln A 5 rt) the presence of stretching results
in a decrease in twist from the equilibrium value g0 thus
effectively introducing a twist deficit, or a twist opposite
in handedness to the equilibrium twist. When the twist
deficit becomes sufficiently large, a writhing (or supercoil-
ing) instability occurs.

A representative sequence of simulation filament con-
formations is shown in Fig. 8. In this simulation G 5 1,
h1 5 h2 5 20, r 5 1022, and g0 5 8. The simulation extends
over four filament doubling times (about 70 non-dimen-
sional time units) starting from initial conditions consisting
of a slightly bent filament of length f/2 non-dimensional
units with initial twist g 5 g0 . The filament initially
straightens in the viscous medium but eventually becomes
unstable, deforming into a helix-like shape and then form-
ing two plectonemic side-branches at about time 50–55.
In Fig. 9 the total twist e g ds is plotted versus time. The
change in rate of gain of twist at the time of plectoneme
formation is seen clearly. This writhing instability allows
more twist to be quickly introduced to the filament, tempo-
rarily relieving the twist deficit.

A plot of g(s, t) is illuminating. The filament starts withFIG. 8. Writhing instability in an exponentially growing filament.
initial conditions g(s, 0) 5 g0 . As time elapses, filamentFirst row: t 5 0, t 5 28.0. Second row: t 5 40.25, t 5 47.0. Third row:

t 5 52.5, t 5 55.5. Fourth row: t 5 58.25, t 5 60.75. stretching causes g to decrease towards 0. The ends of the
filament are able to maintain g p g0 , and twist originating
from the open ends of the filament is able to replenish g

can explain the complicated behavior observed under the
microscope. Thus through simulations of a basic model,
the initial aim at least is to qualitatively reproduce the
bacteria filament behavior.

The assumptions to be made are as follows. First, the
chain of bacteria cells in a medium can be modelled as a
linear viscoelastic rod as described in the previous sections
of this paper. Second, at all points of the bacteria chain,
the cells are growing at the same (constant in space and
time) rate. This assumption could be relaxed to the assump-
tion that each cell is growing and dividing on average at
a certain rate. Third, backbone polymers in the cell wall
prefer energetically to maintain a helical structure with a
(constant in space and time) twist rate g0 . Lastly the effects
of Brownian motion and fluid dynamics are neglected (ex-
cept for viscous drag).

Assumptions 2 and 3 affect the Kirchhoff rod model as
follows. Assumption 3 just says that in the constitutive law

FIG. 9. Total twist Tw versus time for the filament shown in Fig. 8.(3), g0 is a non-zero constant (a linear restoring force is
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FIG. 10. The surface g(s, t) for the filament shown in Fig. 8 is a twist as a function of arclength and time.

in the filament interior for a time. Eventually, however, able stable equilibria of closed rods with contact forces
starting from similar initial conditions and the possibilitythe filament becomes too long for twist to penetrate to the

central part of the filament quickly enough (the twist wave for interesting behavior in open rods. This last result is
of special importance for understanding the non-trivialspeed is constant) and so g decreases rapidly there. This

results in an increase in the twist potential energy density behavior of bacillus subtilis, and it is expected that the
present algorithm will successfully model many aspects ofG(g 2 g0)2 and leads to a supercoiling instability to relieve

the twist energy and reduce the twist deficit. the bacteria’s behavior qualitatively. It is also hoped that
the simulations of writhing instabilities in closed rods pre-
sented here will stimulate further analysis of these instabili-8. CONCLUSIONS
ties. At present there is only partial understanding [49] of

A practical working algorithm for the dynamical evolu- even the linearized problem.
tion of an elastic Kirchhoff rod with proscribed extension
has been presented. The algorithm is based on the idea of ACKNOWLEDGMENTS
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